Dihotomna spremenljivka - kaj je to, opredelitev in koncept

Dihotomna spremenljivka je tista, ki ima lahko le dve vrednosti. Te vrednosti so običajno nič kot odsotnost ali ena kot prisotnost.

Zato se soočamo s spremenljivko, ki nam omogoča, da ugotovimo prisotnost (ena) ali odsotnost (nič) pojava ali značilnosti. Poleg tega je kvalitativna in kategorična, kar pomeni, da izraža kakovost, hkrati pa omogoča, da se primeri razvrstijo v kategorije.

Upoštevajte, da bomo imeli vedno le dve skupini, od tod tudi ime dihotomno.

Razlika med dihotomno in zvezno spremenljivko

Temeljna razlika med dihotomno spremenljivko in zvezno spremenljivko je v tem, da prva predstavlja kategorije, druga pa meri. Neprekinjeno pa je mogoče dihotomizirati, ta lastnost je ob določenih priložnostih zelo koristna. Če želite to narediti, se morate samo odločiti, katere vrednosti bodo predstavljale nič in katere bodo predstavljale eno.

Ta spremenljiva tehnika pretvorbe omogoča enostavnejše preučevanje nekaterih pojavov. Po drugi strani pa prihaja do izgube informacij, ki jih moramo upoštevati. Če se odločimo, da je visok tisti, ki presega 1,75 metra, in kratek preostanek, ne bomo upoštevali vmesnih višin. Odvisno od tega, kaj iščemo, lahko nadomesti dihotomizacijo.

Regresija na dihotomne spremenljivke

Linearna regresija je način povezovanja dveh spremenljivk.

V tem primeru je ena neodvisna, ki jo predstavlja "x", druga pa odvisna ali "y".

Prvi razloži vedenje drugega s parametrom, ki je pozitivno ali negativno število. Vendar je logistična regresija, ki preučuje dihotomne spremenljivke, nekoliko drugačna.

Nato si oglejmo njegovo formulo.

V tem primeru imamo verjetnost «p», da se dogodek zgodi kot funkcija nekaterih spremenljivk, predstavljenih v (F (Y).

Število "e", dvignjeno na drugo, je mogoče dobiti z znanstvenim kalkulatorjem.

Funkcija F (y) pa je linearna enačba.

Uporabili smo najpreprostejše s konstanto (alfa) in parametrom (beta).

Primeri dihotomnih spremenljivk

Poglejmo za konec še nekaj primerov, uporabljenih v znanstveni metodi, tako dihotomnih kot kontinuiranih spremenjenih spremenljivk.

  • Pogost primer je spol. V tem primeru bi se z ničlo lahko sklicevali na moško in tisto za žensko.
  • Verjetnost bolezni na podlagi testa, ki je lestvica. Lahko bi bil dihotomiziran glede na to, da ste okuženi (ena) iz vrednosti in niste (nič) drugače.
  • Drug primer bi bil rezultat nasprotovanja. V tem primeru ocena ni pomembna, ampak pozitivna (ena) ali neuspešna (nič).
  • Končno lahko govorimo o določeni višini za vstop v varnostno silo. Čeprav je neprekinjen, ga lahko naredimo v dihotomno spremenljivko. Če ga srečate, bi bil z višine ena, če pa ne, bi bil nič.

Priljubljene Objave

Kaj se dogaja nenavaden monopol stevedorjev v Španiji?

V Španiji monopol obstaja že desetletja v enem najpomembnejših trgovinskih sektorjev, kar resno vpliva na rast države. Kljub temu je večina potrošnikov skoraj neopažena. Gre za monopol stevedorjev, torej delavcev, ki nalagajoPreberite več…

Ali živimo novo kmetijsko revolucijo?

Kmetijska revolucija se je zgodila v 18. stoletju in je bila odločilna za uspeh industrijske revolucije. Danes, ko se gospodarstvo premika k digitalizaciji in robotizaciji dela, kmetijstvo še posebej izstopa s širjenjem brez primere od konca prejšnjega stoletja. Analiziramo njene vzroke in posledice. Preberite več…

Potreba po poučevanju podjetništva v učilnici

Mladi se v zgodnejši dobi vse bolj približujejo svetu ekonomije in poslovanja. V prejšnjih člankih smo govorili o potrebi po finančnem izobraževanju v srednjih šolah. Na ta način se bodo študentje začeli seznanjati z najbolj vsakdanjimi ekonomskimi koncepti in se tudi naučiti upravljati…